Introduction to Communicable Disease Surveillance and Investigation in North Carolina

Fundamentals of Outbreak Investigations

Jennifer K. MacFarquhar, RN, MPH, CIC Epidemiology Field Officer Centers for Disease Control & Prevention North Carolina Division of Public Health

Learning Objectives

- Understand why outbreak investigations are important
- Know how to perform the steps of an outbreak investigation
- Identify and define an outbreak
- Describe the legal responsibilities of LHD during an outbreak

Reasons to Investigate an Outbreak

- Control disease spread
- Identify the source
- Describe new diseases, learn more about known diseases
- Identify populations at risk
- Evaluate existing prevention strategies
- Develop strategies to prevent future outbreaks
- Educate public about disease prevention
- Address public concern
- Fulfillment of legal obligations and duty of care for the public

When do you investigate?

Always!

Consider the following factors:

- Severity of illness
- Transmissibility
- Unanswered questions
- Ongoing illness / exposure
- Prevention potential
- Public concern

Principles of Outbreak Investigations

Be systematic

- Follow the same basic steps for every type of outbreak
- Develop and write down case definitions
- Ask the same questions of everybody

Stop often to re-assess what you know

- Line list and epidemic curve provide valuable information; many investigations never go past this point
- Consider control measures to be applied
 Coordinate with partners (e.g., environmental)

10 Steps of an Outbreak Investigation

- 1. Identify investigation team and resources
- 2. Establish existence of an outbreak
- 3. Verify the diagnosis
- 4. Construct case definition
- 5. Case finding: Find cases systematically / develop line list
- 6. Perform descriptive epidemiology / develop hypotheses
- 7. Evaluate hypotheses / perform additional studies (as necessary)
- 8. Implement control measures
- 9. Communicate findings
- 10. Maintain surveillance

The 10 Steps and The Scientific Method

Comparing							
Scientific Method	Out	Outbreak Investigation Steps					
Obtain background information (Steps 1-3)	1. 2.	Prepare for field work Establish the existence of an outbreak, consider severity, potential for spread, public concern and availability of resources					
	3.	Verify the diagnosis					
Define the problem (Step 4-5)	4.	Define and Identify the Cases – case definition and line listing					
	5.	Describe and orient the Data in Terms of Time, Place, and Person – Descriptive Epidemiology					
Formulate hypothesis (Step 6)	6.	Develop hypothesis (Agent / Host / Environment Triad) = Chain of transmission					
Develop a Study to Test the Hypothesis (Step 7) Collect Data and Observations (Step 7) Evaluate Results (Step 7)	7.	Evaluate hypothesis – Analytical Studies *Must have a control group*					
Determine if Hypothesis is true / modify (Step 8)	8.	Refine hypothesis and Carry out Additional Studies					
Formulate Conclusions (Step 9) Report Results (Step 10)	9. 10.	Implement Control and Prevention Measures Communicate Findings					

What is an outbreak?

Increase in cases above what is normally expected (e.g., baseline):

- in that population
- in that area

Occurrence of 2 or more 'epi-linked' cases

How do you know if it is an outbreak?

For notifiable diseases

- Reported to local, state health departmentsNC EDSS!
- Compare number of current cases / rate with previous weeks
- Compare number of current cases / rate with same time period or season in previous years

Example: NC Notifiable Disease Summary

NORTH CAROLINA COMMUNICABLE DISEASE MONTHLY REPORT

July, 2012

Number of probable and confirmed communicable disease cases in North Carolina by disease for: 1) the current month, 2) the year to date, 3) the average cases for the year to date, 4) the total cases during 2011, 5) and the average (with 95% confidence intervals) of the previous five years.

DISEASE	Cases in July, 2012	Cases During January and July, 2012	Average Cases During January and July. 2007 - 2011	Cases in 2011	Average cases (95% confidence interval) per vear 2006 to 2010
Botulism'	0	0	1	2	1 (0 – 4)
Campylobacter Infection*	122	557 📤	309	909	693 (361 - 1,026)
Chlamydia ^z	4,035	27,689	16,345	54,891 🛖	39,161 (29,695 – 48,641)
Cryptosporidiosis	15	58	34	115	114 (22 – 206)
E. coli O157:H7/ STEC Infection*	7	52	51	155	126 (57 – 194)
Ehrlichiosis ³	26	40	23	107	67 (40 – 174)
Gonorrhea	1,108	8,102	7,083	17,487	15,336 (8,779 - 21,892)
Group A Strep Infection, Invasive	13	87	99	181	143 (81 – 205)
Haemophilus Influenzae	8	56	50	84	86 (7 - 179)
Hepatitis A	0	12	27	31	60 (11 – 109)
Hepatitis B (acute)	4	36	56	124	128 (66 – 190)
Hepatitis B (perinatal)	0	0	0	1	2 (0 - 5)
Hepatitis B (chronic) ⁴	52	498	522	1,309 📤	873 (662 – 1,085)
Hepatitis C (acute)	13	39	19	61	29 (6 - 64)
nfluenza Death, Adult ^s	0	7	8	26	50 (0 - 117)
nfluenza Death, Pediatric	0	2	2	10	3 (0 – 14)
LaCrosse Encephalitis	3	6	3	24	15 (1 – 31)
Legionellosis	4	25	24	86	52 (15 – 86)
Listeriosis	1	5	9	21	25 (8 – 42)
Lyme Disease	6	25	30	91	66 (23 – 155)

How do you know if it is an outbreak?

For non-notifiable conditions such as norovirus or influenza:

- Common symptoms/syndromes
- Seasonal patterns

Is it a true increase?

Reasons why the observed cases may exceed the expected numbers:

- Increased awareness or public interest
- Changes:
 - Reporting procedures
 - Case definition
 - Diagnostic procedures
 - Clinician or clinician practices
 - -Actual outbreak

Examples: Are these outbreaks?

- Single case of acute Hepatitis A in food handler?
- Seven cases of pertussis in a community in December?
- One case of acute GI illness in individual after eating at Diner A?
- Thirty cases of acute GI illness after eating at church picnic?
- One case of smallpox?

Legal Responsibilities of Local Health Department

- Investigate potential outbreak
- Implement interventions and control measures
- Ensure compliance with control measures

Conclusions

Epidemiologic investigations essential component of public health, present opportunities to:

- Characterize diseases
- Identify populations at risk
- Evaluate programs, policies, or existing prevention strategies
- Train public health staff
- Educate the public
- Fulfill legal obligations and duty of care for the public

10 steps provide systematic framework necessary to investigate any outbreak